


Pharmacogenomics to increase anti-cancer drugs safety, from research to clinical implementation

Erika Cecchin, PharmD, PhD

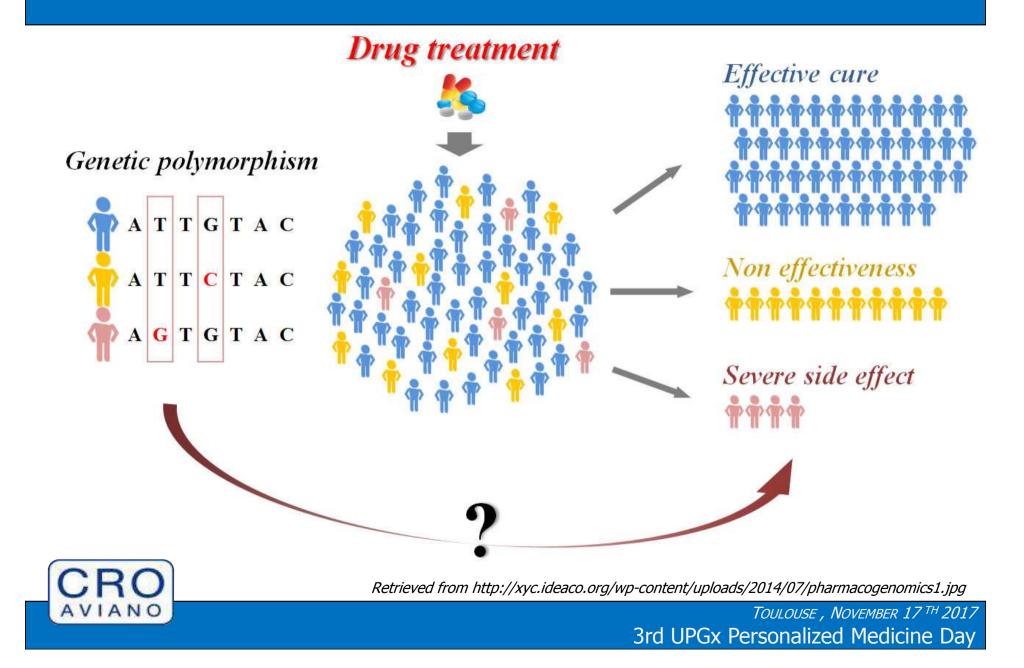
Experimental and Clinical Pharmacology Unit Centro di Riferimento Oncologico- Aviano- Italy

Adverse Drug Reactions in pharmacological treatment

•Over 2 millions ADRs yearly in US, 100,000 resulting in death (*Inst Med, Nat Acad Press, 2000*)

•They are estimated to cost £1 billion in UK (Pirmohamed, Br Med J, 2004), and \$4 billion annually in the US (*Lazarou J et al, JAMA, 1998*)

•A revision of more than 4,000 patients treated for mCRC in the US in 2014 demonstrated that about 90% developed at least one ADR with a sginificant economic burden (*Latremouille et al, J Med Economics, 2016*)

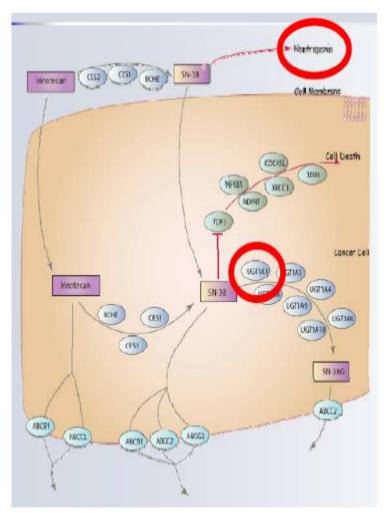

"If it were not for the great variability among individuals, medicine might as well be a science and not an art"

Sir William Osler, 1892

Pgx approach to increase drug safety

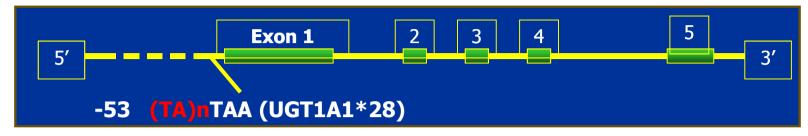
Implementation of pre-emptive genotyping of the HOST for increasing treatment safety

Two gene-drug interactions from the oncological practice: *DPYD* and *UGT1A1*

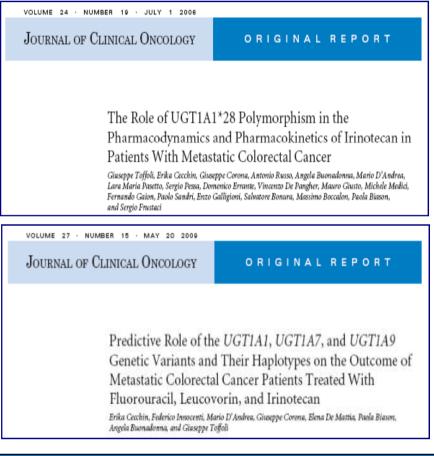

UGT1A1-Irinotecan

•Irinotecan is approved for the first line treatment of metastatic colorectal cancer and other solid tumors

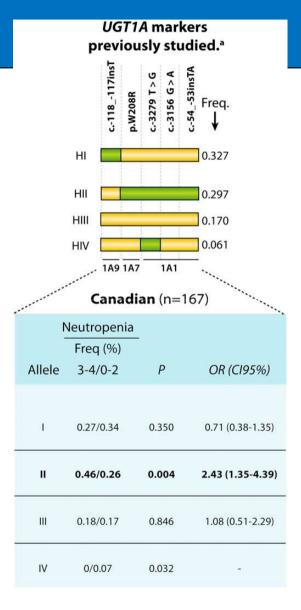
•Exposure to the active irinotecan metabolite SN-38 is the major cause of adverse events


•Severe neutropenia and delayed diarrhea are the dose-limiting toxicities, with the sporadic occurrence of severe and occasionally lifethreatening complications possibly causing the failure of the treatment

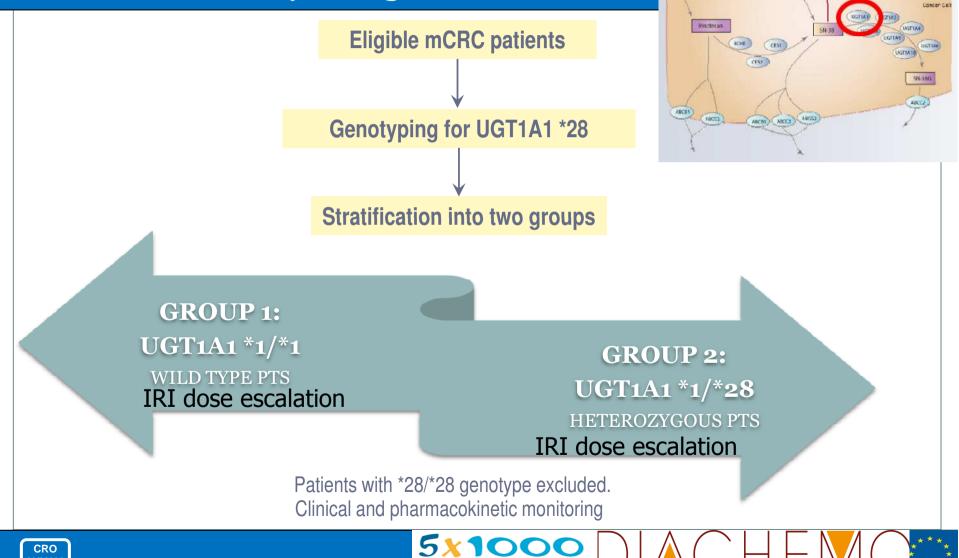
•UGT1A1 has a major role in SN-38 detoxification



UGT1A1-Irinotecan

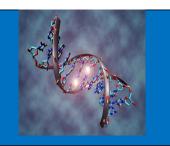

- *UGT1A1* encoding gene is polymorphic
- *UGT1A1*28* polymorphism is common in Caucasian population (10% is homozygous)
- *UGT1A1*28* polymorphism is related to lower UGT1A1 enzyme expression, therefore SN-38 glucuronidation could be less efficient

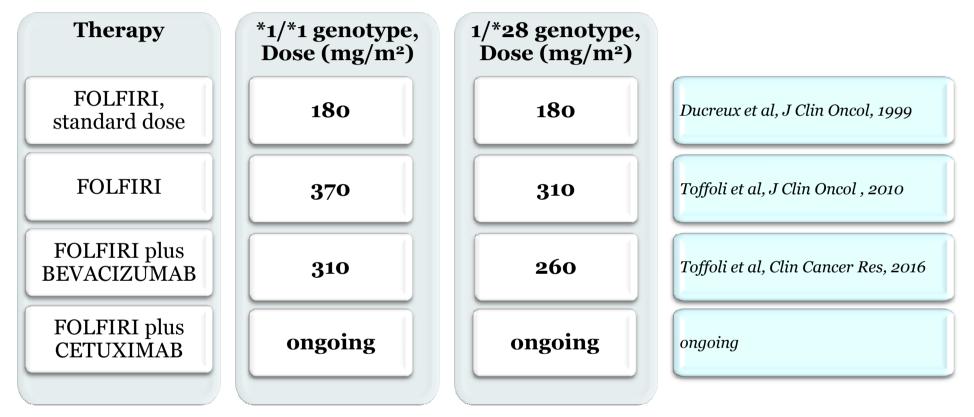
External validation in collaboration with Universitè Laval-Quebec



OUR RESULTS ON HAPLOTYPE II (as reported by us, all "defective" UGT1A alleles; Cecchin 2009) PREDICTIVE VALUE ON NEUTROPENIA (UNPUBLISHED DATA) WERE REPLICATED IN AN INDEPENDENT COHORT OF 167 CANADIAN mCRC PATIENTS TREATED WITH FOLFIRI-BASED REGIMENS.

Phase 1b studies based on the patient genotype for re-definition of MTD: the study design


AVIANO



XAIRC = RICERCA

Impolecan CES2 CS1 BCHE SN-38

Phase 1b studies based on the patient genotype for re-definition of MTD: the results

The stratification of patients in FOLFIRI or FOLFIRI plus bevacizumab regimens according to *UGT1A1*28* genotype led to a higher MTD both in *UGT1A1*1/*28* and *UGT1A1*1/*1* patients.

CASCPT

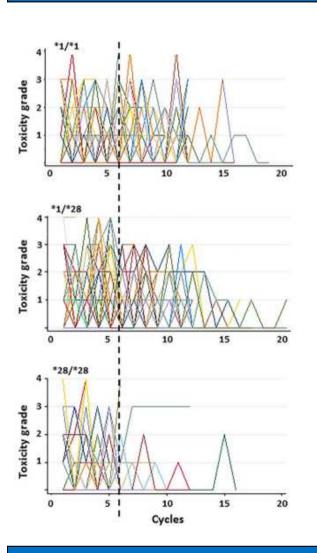
ARTICLES

Cost Evaluation of Irinotecan-Related Toxicities Associated With the *UGT1A1*28* Patient Genotype

R Roncato¹, E Cecchin¹, M Montico¹, E De Mattia¹, L Giodini¹, A Buonadonna², V Solfrini³, F Innocenti⁴ and G Toffoli¹

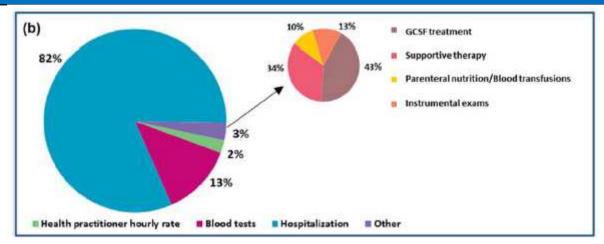
Spreading of *UGT1A1*28* pre-emptive genotyping to increase irinotecan safety is still limited. The definition of the cost consequences of patients genotype is one of the pending issues. A survey of the toxicity associated costs in 243 FOLFIRI treated mCRC

UGT1A1 genotype	Number of patients		redicted cost per ^a (95% Cl) (Euro)	Regression coefficient	95% CI	P-value	Regression coefficient	95% CI	P-value
*1/*1	109	812	(653–970)	Ref ^b	0.00.000				
*1/*28	112	1,119	(885–1,353)	0.32	0.04-0.60	0.024	Ref ^b		
*28/*28	22	4,886	(2,611-7,160)	1.79	1.31-2.28	<0.001	1.47	0.99-1.95	<0.001


CI, Confidence Interval; Ref, Reference Category.

^aBy generalized linear model, adjusted by age, sex, adjuvant chemotherapy, and total number of chemotherapy cycles. ^bReference category for regression coefficients calculation.

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 102 NUMBER 1 | JULY 2017

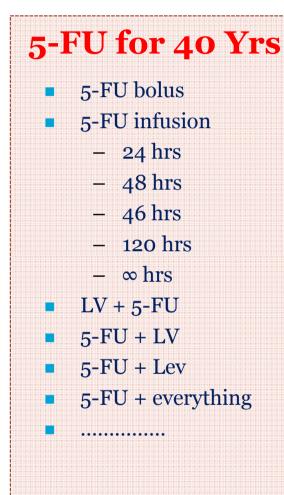

125

Severe toxicity related to hospitalization costs (grade 4) are significantly more prevalent in patients that are carriers of *28 allele.

CRO

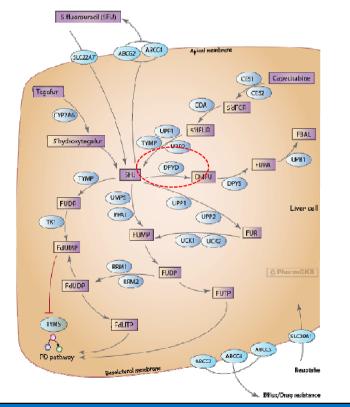
AVIANO

Most of the costs are related to hospitalization (grade 4 toxicity). The risk of grade 4 toxicity is *28 allele dependent


Table 4 Occurrence of any kind of grade 4 toxicities based on UGT1A1*28 polymorph

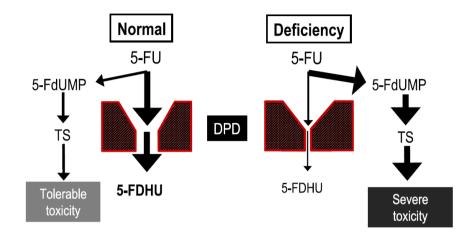
	Number		before the h cycle	OR (95% CI)	P-value
UGT1A1 genotype	Number of patients	G0-G3	G4 (%)		
*1/*1	109	108	1 (0.9)	Ref	
*1/*28	112	103	9 (8.0)	9.4 (1.2-75.8)	0.019
*28/*28	22	20	2 (9.1)	10.8 (0.9-124.9)	0.073
*1/*28/ and *28/*28	134	123	11 (8.2)	9.7 (1.2-76.1)	0.014

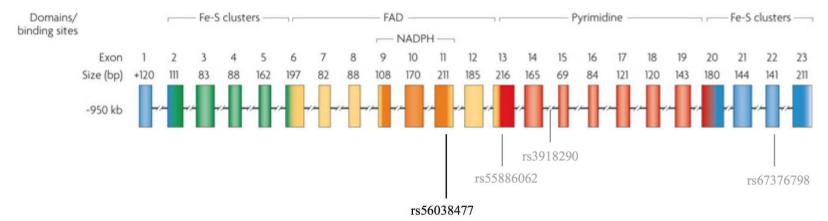
G, Grade; CI, Confidence Interval; Ref, Reference Category.



DPYD-Fluoropyrimidines

•FL are the mainstay of many chemotherapeutic schemes in different combination for different pathologies and settings


•10 to 26% of patients experiencing acute severe or life-threatening toxicity even in monotherapy regimens



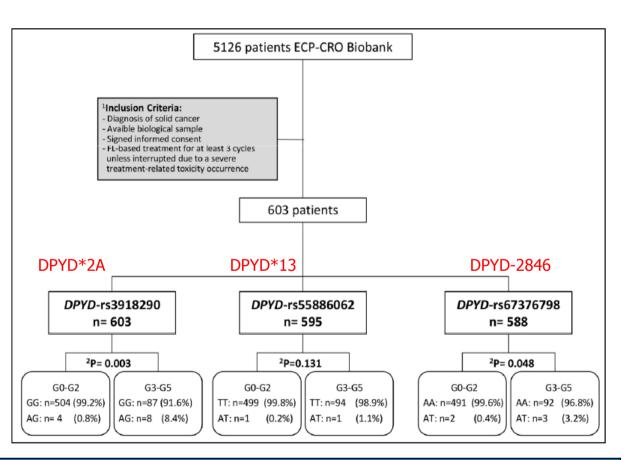
DPYD IS A KEY ENZYME REPRESENTING A BOTTLENECK IN FL CELL DETOXIFICATION

DPYD-Fluoropyrimidines

Retreived from Goodsaid, F. M. et al. Nat Rev Drug Discov 2010, 9, 435-445

Clinical validity of a DPYD-based pharmacogenetic test to

predict severe toxicity to fluoropyrimidines


Giuseppe Toffoll^{1*}, Luciana Giodini^{1*}, Angela Buonadonna², Massimiliano Berretta³, Antonino De Paoli⁴, Simona Scalone², Gianmaria Miolo², Enrico Mini⁵, Stefania Nobili⁶, Sara Lonardi⁷, Nicoletta Pella⁸, Giovanni Lo Re⁹, Marcella Montico¹, Rossana Roncato¹, Eva Dreussi¹, Sara Gagno¹ and Erika Cecchin¹

603 solid cancer patients treated with FL-based regimen

► <u>Clinical End-Point</u>: Severe (≥G3) or lethal toxicity related to FL administration

•Characterizing prospectively these SNPs would have possibly spared 10 severe toxic events and 1 toxic death (<u>11.6% of</u> <u>severe toxic events</u>)

•The patient with toxic death was compound heterozygous for *DPYD*2A*, and *DPYD*13* and was treated in an adjuvant regimen for gastric cancer

Cuicc

IIC

International Journal of Cancer

*UGT1A1*28* and *DPYD*2A*, **13*, and *2846A>T* still not at the bedside.. further proofs of clinical validity and utility requested?

Pharmacogenomics guidelines are available up to date

C A ttps://www.pharmgkb.org/page/dpwg

The objectives of the DPWG are: Phenotype (genotype) Examples of Implications for surveillance diplotypes meas The DPWG is funded by the KNMP [Article: 18253145] [Article:21412232] The DPWG is funded by the KNMP Homozygous wild-type or Normal DPD act Methods normal, high DPD activity (two *1/*1 "normal" risk for or more functional *1 alleles) fluoropyrimidine Heterozygous or intermediate Decreased DPD activity (~3-5% of patients), (leukocyte DPD Level of evidence may have partial DPD *1/*2A; *1/*13; 30% to 70% that deficiency, at risk for toxicity *1/ population) and with drug exposure (one Evidence rs67376798) for severe or ev functional allele *1, plus one toxicity when tre nonfunctional allele - *2A, *13 fluoropyrimidine or rs67376798) 2 Homozygous variant, DPD Complete DPD deficiency and deficiency (~0.2% of patients) *2A/*2A; increased risk for severe or at risk for toxicity with drug *13/*13: even fatal drug toxicity when Select alternate drug exposure (2 nonfunctional rs67376798 treated with fluoropyrimidine alleles - *2A, *13 or rs67376798 drugs rs67376798)

PharmGKB HOME I PUBLICATIONS | FEEDBACK | SIGN IN I Экимр DPWG: Dutch Pharmacogenetics Working Group The Dutch Pharmacogenetics Working Group (DPWG) was established in 2005 by the Royal Dutch Pharmacist's Association (KNMP). The DPWG is multidisciplinary and includes clinical pharmacists, physicians, clinical pharmacologists, clinical chemists, epidemiologists, and toxicologists. To develop pharmacogenetics-based therapeutic (dose) recommendations. . To assist drug prescribers and pharmacists by integrating the recommendations into computerized systems for drug prescription and automated medication Detailed information about the project can be found in: For each drug, a systematic search was carried out. The articles included in the reference lists were individually screened for additional material or papers. Wherever information relating to gene-drug interaction was present in the European Public Assessment Report, the manufacturer was asked to provide further details. Review articles, studies involving nonhuman subjects and in vitro experiments were excluded. For each retrieved article two parameters were defined Level of evidence of the gene-drug interaction . Clinical relevance of the potential adverse drug event, decreased therapeutic response, or other clinical effect resulting from the gene-drug interaction. The level of evidence of the gene-drug interaction indicates the quality of the evidence found in literature for the gene-drug interaction. The level of evidence was scored on a five-point scale with a range from 0 (lowest evidence) to 4 (highest evidence). Level of Definition (Levels of Evidence) Published controlled studies of "good quality" relating to phenotyped and/or genotyped patients or healthy volunteers, and having relevant pharmacokinetic or clinical endpoints. "Good quality" criteria include (i) the use of concomitant medication with a possible effect on the phenotype is reported in the manuscript; (ii) confounders are reported (e.g. smoking status); (iii) the reported data are based on steady-state kinetics; and (iv) results are corrected for dose variability. Published controlled studies of "moderate quality" relating to phenotyped and/or genotyped patients or healthy volunteers, and having relevant pharmacokinetic or clinical endpoints. "Moderate" is defined as missing one or more of the "good quality" criteria.

Published case reports, well documented, and having relevant pharmacokinetic or clinical endpoints. Well documented case series.

Strong

PHARMGKB

%☆ 🖸 =

U-PGx | Ubiquitous Pharmacogenomics

Coordinated by Leiden University-Prof HJ Guchelaar

http://upgx.eu/

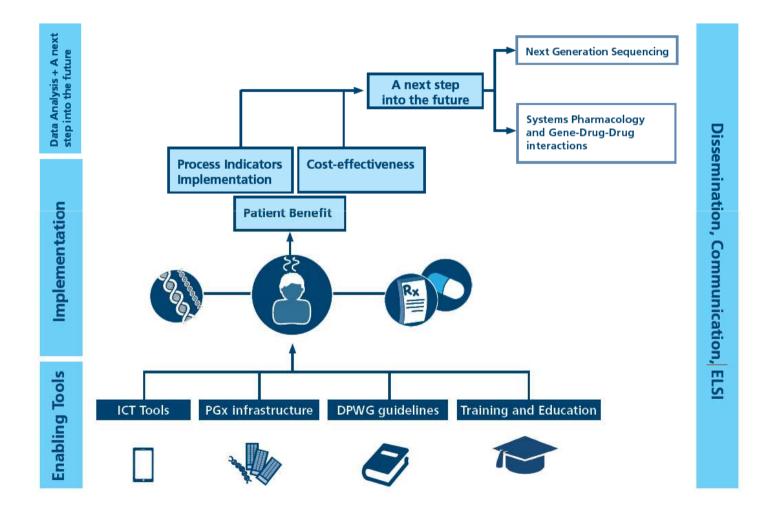
WE WANT TO MAKE EFFECTIVE TREATMENT OPTIMIZATION ACCESSIBLE TO EVERY EUROPEAN CITIZEN

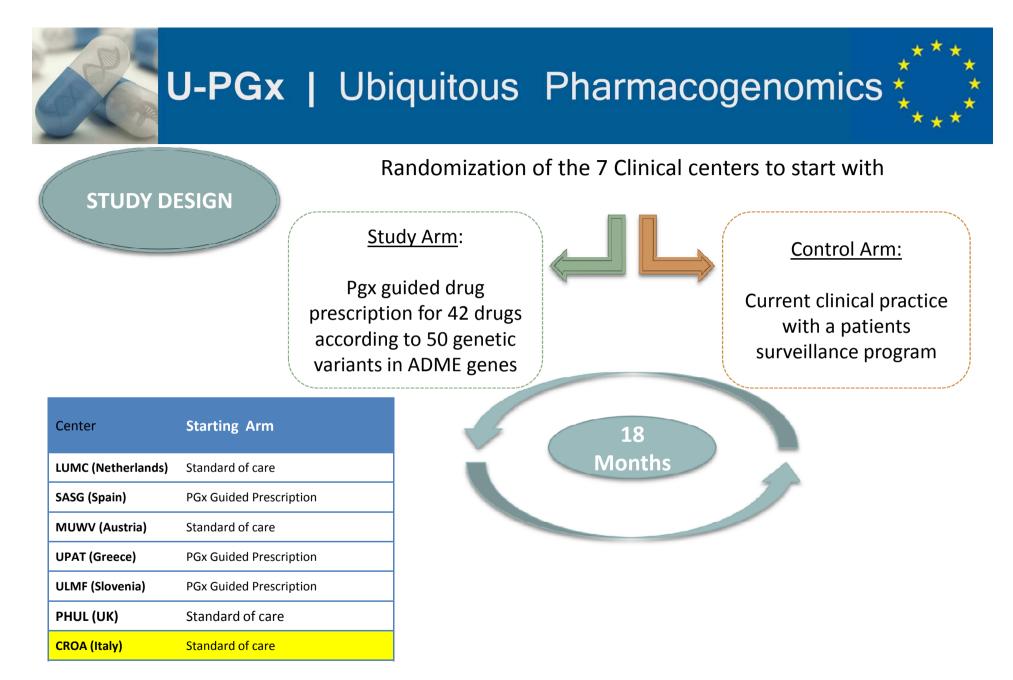
TELL ME MORE

10 EU countries 15 research organizations 1 SME

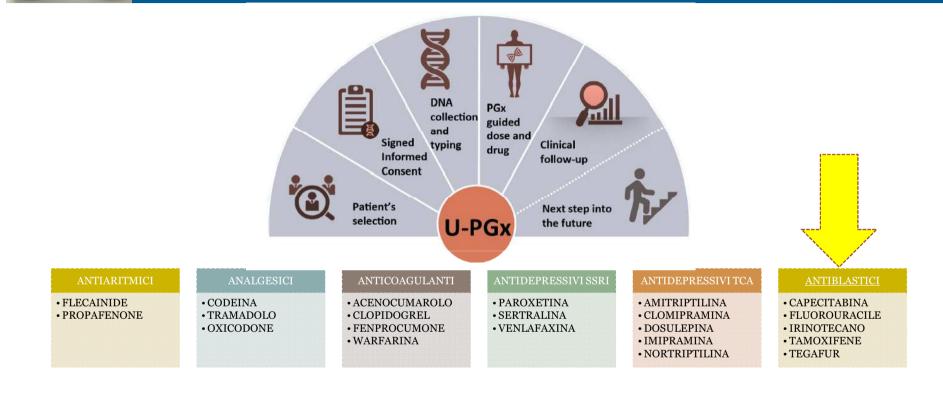
European Commission

Ubiquitous Pharmacogenomics (U-PGx): Making actionable pharmacogenomic data and effective treatment optimization accessible to every European citizen www.upgx.eu


List of participants


Participant Name	Acronym	Participant organisation name	Country
1 H-J Guchelaar,	LUMC		
coordinator		Medical Center, University of Leiden	
JJ Swen		Dept. of Clinical Genetics, Dept. of Human Genetics, Leiden	
M Kriek		University Medical Center, University of Leiden	
2 M Pirmohamed	PHUL	Dept. of Molecular & Clinical Pharmacology, Royal Liverpool	UK
R Turner		University Hospital, University of Liverpool	
3 J Stingl	FDMD	The Federal Institute for Drugs and Medical Devices, Bonn	Germany
4 M Ingelman-	PPKI	Dept. of Physiology & Pharmacology, Karolinska Institute,	Sweden
Sundberg		Stockholm	
5 C Mitropoulou	GHXF	The Golden Helix Foundation, London	UK
6 M. Van Rhenen	KNMP	Royal Dutch Pharmacists Association (KNMP), The Hague	Netherlands
K-C Cheung			
7 D Steinberger	BIOL	bio.logis, Center for Human Genetics and bio.logis Genetic	Germany
(SME)		Information Management GmbH, Frankfurt Innovation	
		Center for Biotechnology, Frankfurt	
8 VHM Deneer STZN		Dept. Clinical Pharmacy, St. Antonius Hospital,	Netherlands
		Nieuwegein/Utrecht	
9 CL Davila	SASG	Dept. of Pharmacy, Servicio Andaluz de Salud, San Cecilio	Spain
Fajardo		University Hospital Granada, Granada	
10 G Sunder-	MUWV	Div. of Nephrology & Dialysis, Medical University of Vienna,	Austria
Plassmann		Vienna	
M Samwald		Center for Med. Statistics, Informatics, and Intelligent	
		Systems, Medical University of Vienna, Vienna	
11 GP Patrinos	UPAT	Dept. of Pharmacy, University of Patras, Patras	Greece
12 V Dolžan	ULMF	Pharmacogenetics Lab., Faculty of Medicine, University of	Slovenia
		Ljubljana, Ljubljana	
13 A Cambon-	UPS	University Toulouse III Paul Sabatier, Toulouse	France
Thomsen			
14 G Toffoli	CROA	Experimental and Clinical Pharmacology Unit, Centro di	Italy
E Cecchin		Riferimento Oncologico, National Cancer Institute, Aviano	
15 M Karlsson	A Karlsson PBUU Dept. Pharmaceutical Biosciences, Uppsala University,		Sweden
S Jönsson		Uppsala	
16 M Schwab	IKP	Dr. Margarete Fischer-Bosch-Institute of Clinical	Germany
E Schaeffeler		Pharmacology, Robert Bosch Hospital Stuttgart	

Project Flow-chart


C.H.van Der Wouden et al, Clin Pharmacol Ther, VOLUME 101 NUMBER 3 | MARCH 2017

U-PGx | Ubiquitous Pharmacogenomics

ANTIEPILETTICI	ANTIPERTENSIVI	ANTI-INFETTIVI	ANTIPSICOTICI	ANTICOLESTEROLEMICI	IMMUNOSOPRESSIVI
• CARBAMAZEPINA • FENITOINA	• CARVEDILOLO • METOPROLOLO	• EFAVIRENZ • FLUCLOXACILLINA • VORICONAZOLO	ARIPIPRAZOLO CITALOPRAM CLOZAPINA ESCITALOPRAM ALOPERIDOLO PIMOZIDE RISPERIDONE ZUCLOPENTIXOLO	• ATORVASTATINA • SIMVASTATINA	• AZATIOPRINA • MERCAPTOPURINE • TACROLIMUS • TIOGUANINE

E. Cecchin et al, Curr Pharm Biotech, 2017- VOLUME 18 ISSUE 3 / 204 - 209

Ubiquitous Pharmacogenomics Patients involvement matters

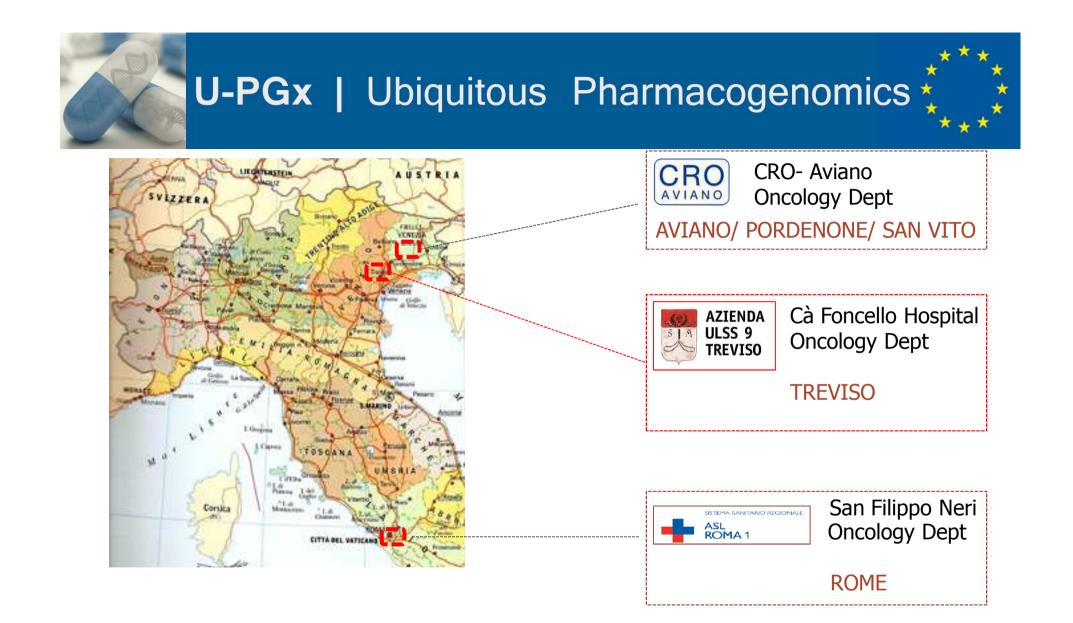
Scan QR-Code

safety-code

What is it? The Medication Safety Code on the left represents a patient-specific genetic profile regarding important pharmacogenes.

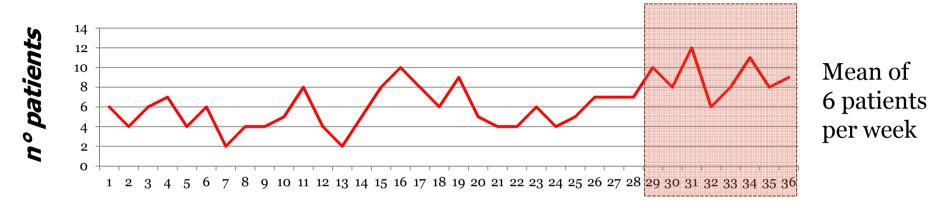
How does it work?

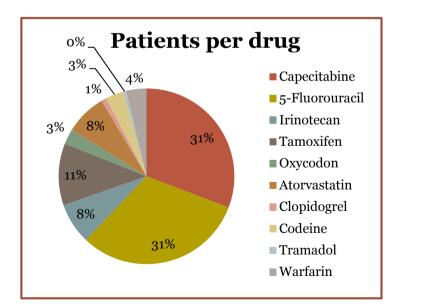
Laboratory contact +0123456789 Some lab name Some street name 123/45 1234 Some city name After scanning the QR code (e.g. with a smartphone), you are led to a website that displays patient-specific drug dosing recommendations.

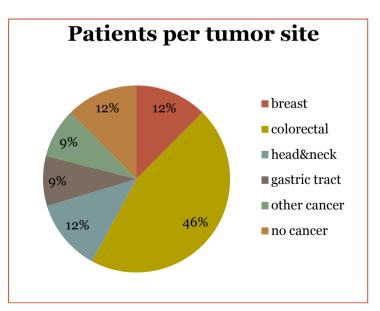

/	The Medication Safety					
	Gene, status	Critical drug substances (modification recommended!)				
CYP2C19 Poor metabolizer CYP2D6 Ultrarapid metabolizer		Clopidogrel, Sertraline Amitriptyline, Aripiprazole, Clomipramine, Codeine, Doxepin, Haloperidol, Imipramine, Metoproloi, Nortriptyline, Paroxetine, Propafenone, Risperidone, Iamoxifen, Iramado, Venlafaxine				
	Other genes Not actionable	ABCB1, ADRB1, BRCA1, COMT, CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP3A4, CYP3A5, DPVD, G6PD, HMGCR, P2RY12, SULT1A1, UGT1A1, VKORC1				
	Date printed: 15.03.2016	Card number: 0000001				

Filter substance list...
Coticsal for this patient
Azathioprine (!)
Dutch Pharmacogenetics Working Group Underline
Network: TMM poor metabolizer
Select alternative drug or reduce dose by 90%. Increase dose in response of hematologic monitoring and efficacy.
Date of evidence: Minch 16, 2011
The Show guideline website
Codeine (!)
Mercaptopurine (!)
Thioguanine (!)

SAFETY CODE CARD (http://safety-code.org/)

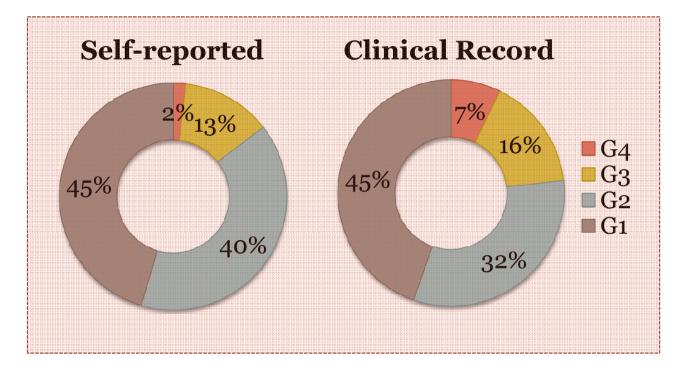

Developed by Matthias Samwald group (University of Wien)




U-PGx | Ubiquitous Pharmacogenomics

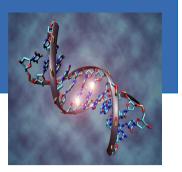
Enrollment Rate by time 1,125 patients up-to date/239 at CRO

Weeks (date of first drug admin)


Self-reported side effects at 4/12 weeks (calculated on 194 pts)

Center	Index Drug	N° Pts	4 weeks Quest	12 weeks Quest	%				
			Quest	Quest		Self-evaluation of side-			
CRO-A	Cape	57	50	29	51%	effects			
	5-FU	27	21	14	52%	12%			
	IRI	12	8	6	50%	no effect			
	TAM	19	15	8	42%	46% ■ mild/moderate			
	Other	3	3	2	67%	42% ■ intense/very			
SFN-R	Cape	7	6	6	100%	intense			
	5-FU	28	24	18	64%				
	IRI	3	3	2	67%				
	TAM	5	4	4	80%				
	Other	32	11	6	19%	FOLLOW UP IS ON-GOING			
h-TV	Cape	1	0	0	0%				
Overall		194	145	95	49%				

U-PGx | Ubiquitous Pharmacogenomics 🥇


ADRs data collection at 4 weeks and NCI-CTC grading

94 pts

Under estimation of ADR severity by the patients
5/94 (5.3%) extreme phenotype patients, hospitalised for toxicity
1 Toxic death

Conclusion

- *UGT1A1* and *DPYD* are two hotspots in the field of cancer pharmacogenomics
- Prospective genotyping of IRI and FL treated patients could spare severe toxicity and save economic resources
- U-PGx is a large and prospective randomized implementation trial conducted in 7 European Health Care Centers with the aim to set the condition for translating PGx in the clinical setting in Europe
- U-PGx will hopefully provide the ultimate proof for the clinical utility of a pharmacogenomic driven treatment

Acknowledgements

U-PGx | Ubiquitous Pharmacogenomics

Experimental and Clinical Pharmacology

Director Giuseppe Toffoli

Pgx group: Alessia Bignucolo, Lisa Dal Cin, Chiara Dalle Fratte, Elena De Mattia, Eva Dreussi, Fabrizio Ecca, Marica Garziera, Michela Guardascione, Loredana Romanato, Rossana Roncato, Franca Sartor

Quebec University- Prof Chantal Guillemette

University of Chapel Hill- Prof Federico Innocenti

U-Pgx European Consortium- Prof HJ Guchelaar

van der Wouden CH, Cambon-Thomsen A, Cecchin E, Cheung K, Dávila-Fajardo CL, Deneer VH, Dolžan V, Ingelman-Sundberg M, Jönsson S, Karlsson MO, Kriek M, Mitropoulou C, Patrinos GP, Pirmohamed M, Samwald M, Schaeffeler E, Schwab M, Steinberger D, Stingl J, Sunder-Plassmann G, Toffoli G, Turner RM, van Rhenen MH, Swen JJ

Univ of Padova- Istituto Oncologico Veneto Univ di Trieste- Burlo Garofolo- Prof G DeCorti, Prof G Stocco Univ of Florence- Prof E Mini, Dr S Nobili Hospital San Filippo Neri –Roma- Dr. M D'Andrea, Dr T Diraimo