

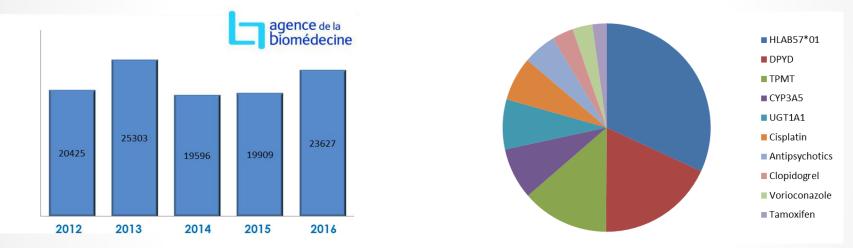
Pharmacogenetics-based personalized therapy: *levels of evidence and recommendations from the* **French national network of pharmacogenetics** (RNPGx)

Dr Fabienne THOMAS

Laboratoire de Pharmacologie, IUCT-Oncopole, Toulouse Equipe 14 « Dose individualization of anticancer drugs », CRCT INSERM U1037

Nicolas PICARD, Laurent BECQUEMONT, Chantal BARIN-LE GUELLEC, Jean-Christophe BOYER, Laurent CHOUCHANA, Thomas DUFLOT, Julien DUPOUEY, Marie-Christine ETIENNE-GRIMALDI, Fabien LAMOUREUX, Sylvie QUARANTA, Céline VERSTUYFT, Jean-Baptiste WOILLARD, Marie-Anne LORIOT (*on behalf of RNPGx, France*)

Thematic issue about PGx


SOMMAIRE

		Cité dans : Biosis Previews (Biological Abstracts), Embase (Excerpta Medica), ISI Customer Information Services Journal Citation Reports (Science Index), Medline (Index Medicus), Scopus	5,
	55N 0040-5957	Pharmacogénétique / Pharmacogenetics Éditorial L. Becquemont, N. Picard et C. Verstuyft	171
	Journal de la Société Française de Pharmacologie et de Thérapeutique	 Traitements personnalisés grâce à la pharmacogénétique : niveaux de preuve et de recommandations du Réseau national de pharmacogénétique (RNPGx) N. Picard, JC. Boyer, MC. Etienne-Grimaldi, C. Barin-Le Guellec, F. Thomas, MA. Loriot et le Réseau national de pharmacogénétique (RNPGx) 	175
Thér	anie	 Pharmacogenetics-based personalized therapy: Levels of evidence and recommendations from the French Network of Pharmacogenetics (RNPGx) N. Picard, JC. Boyer, MC. Etienne-Grimaldi, C. Barin-Le Guellec, F. Thomas, MA. Loriot and the French National Network of Pharmacogenetics (RNPGx) 	185
	apic	Pharmacogénétique des médicaments anticancéreux : état des connaissances et des pratiques - recommandations du Réseau national de pharmacogénétique (RNPGx) S. Quaranta et F. Thomas	193
macogénétique / Pharmacogenetics Pharmacogenetics-based personalized therapy	Société Française de Pharmacologie et de Thérapeutique	Pharmacogenetics of anti-cancer drugs: State of the art and implementation - recommendations of the French National Network of Pharmacogenetics S. Ouaranta and F. Thomas	205
Pharmacogenetics of anti-cancer drugs Cancer genomics guide clinical practice in personalized medicine		La génétique somatique des tumeurs solides, un incontournable à l'ère de la médecine de précision J. Lehmann-Che, B. Poirot, J.C. Boyer et A. Evrard	217
harmacogenetics of hypersensitivity drug reactions Pharmacogenetics in cardiovascular diseases		Pharmacogenetics of hypersensitivity drug reactions S. Negrini and L. Becquemont	231
Pharmacogenetics of immunosuppressant drugs Pharmacogenetics of antidepressant drugs Pharmacogenetics of Type 1 Gaucher disease		 Pharmacogénétique en cardiovasculaire : état des connaissances et des pratiques - recommandations du Réseau national de pharmacogénétique (RNPGx) F. Lamoureux, T. Duflot et le Réseau national de pharmacogénétique (RNPGX) 	245
	Pharmacogenetics	 Pharmacogenetics in cardiovascular diseases: State of the art and implementation-recommendations of the French National Network of Pharmacogenetics (RNPGx) F. Lamoureux, T. Duflot and the French Network of Pharmacogenetics (RNPGX) 	257
		Pharmacogénétique des immunosuppresseurs : état des connaissances et des pratiques - recommandations du Réseau national de pharmacogénétique (RNPGx) JB. Woillard, L. Chouchana, N. Picard, MA. Loriot et le Réseau national de pharmacogénétique (RNPGx)	269
	n°2 Vol. 72 Avril 2017	 Pharmacogenetics of immunosuppressants: State of the art and clinical implementation - recommendations from the French National Network of Pharmacogenetics (RNPGx) JB. Woillard, L. Chouchana, N. Picard, MA. Loriot and the French Network of Pharmacogenetics (RNPGX) 	285

Pha

PGx activity in France

- 50 laboratories offer PGx testing: pharmacogenetic testing is available for a variety of drug-gene pairs.
- 23627 patients have been explored in 2016 (germline PGx)

- Select the most appropriate drug option or to adjust drug dose
- Tests are not always mentioned in drug information labels and the information provided is generally insufficient to know exactly how they can be useful.

Background

• Examples of information available in selected French drug information labels (accessed in 2016)

Capecitabine Contraindication: "In patients exhibiting a known complete deficiency of dihydropyrimidine dehydrogenase (DPD) activity"

Irinotecan Pharmacodynamics: Data from a meta-analysis indicate that persons who are homozygous for the UGT1A1*28 allele (Gilbert's syndrome) have a higher risk of hematological toxicity (grades 3 and 4) after irinotecan administration at moderate to high doses (150 mg/m2). (...) Patients known to be homozygous for UGT1A1*28 should be given the normally indicated irinotecan dose. However, these patients should be carefully monitored to detect potential hematological toxicity. The exact reduction for the initial dose in this population of patients has not been established (...) Data are currently insufficient to conclude concerning the clinical usefulness of the UGT1A1 genotype"

Methodology

• Elaboration of a classification for PGx testing, which integrates :

• The functional impact of genetic variations

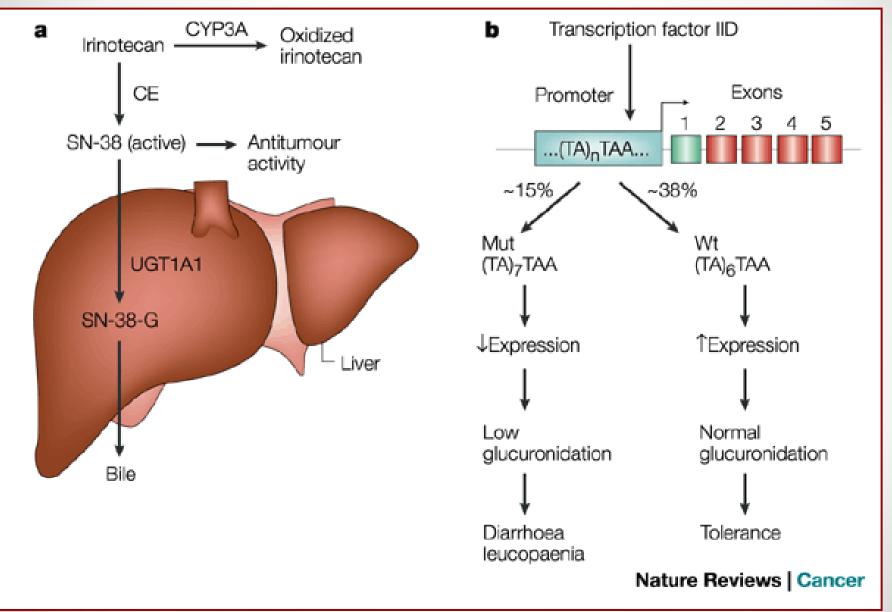
- The nature of the phenotype concerned
- The clinical evidences available
- The existence of non-genetic options for treatment personalization

Results

• Elements that can be used to assess the level of evidence relative to the functionality of a variant in PGx

Level of evidence	Description of elements concerning the variant
Demonstrated (avéré)	Direct functional impact on the expression or activity of a "pharmacogene" product demonstrated <i>in vitro</i> , with <i>ex vivo</i> data in humans corroborating this functional impact
effect on function	Indirect functional impact on the expression or activity of a "pharmacogene" product (existence of a linkage disequilibrium (LD) within a haplotype containing the deleterious genetic variation), with <i>ex vivo</i> data in humans corroborating this functional impact
Probable effect	Direct (demonstrated <i>in vitro</i>) or indirect (by LD) functional impact on the expression or activity of a "pharmacogene" product, without <i>ex vivo</i> data in humans, or a functional impact that has not been the object of an in vitro demonstration
Potential (à confirmer) effect	<i>In silico</i> predicted functional impact (change in protein sequence, localization in a functional domain, modeling)

Results


Levels of recommendations for PGx testing: proposed classification

Essential / indispensable	Demonstrated or probable functionality Demonstrated impact on a clinical phenotype of major importance [response (efficacy, resistance)/toxicity] for therapeutic management; difficult or impossible to predict with a non-genetic approach; having led to expert agreement in favor of systematic testing
Advisable / conseillé	Demonstrated functionality Demonstrated impact on clinical phenotype of major importance, but predictable by a non- genetic approach (phenotyping), having led to expert agreement in favor of testing as a complement to phenotyping or when phenotyping is not possible as a first-intention approach Or Demonstrated functionality Demonstrated impact on an intermediary non-clinical phenotype but that is important to predict drug exposure (e.g. pharmacokinetics) for therapeutic management, having led to expert agreement in favor of testing.
Possibly useful / Eventuellement utile	Demonstrated or probable functionality Probable impact that remains to be demonstrated on a clinical phenotype or on an intermediary (non-clinical) phenotype having led to expert consensus in favor of testing, case-by-case, depending on the clinical context (unusual response to a drug, specific disease)

Application in the case of selected drugs in **ONCOLOGY**

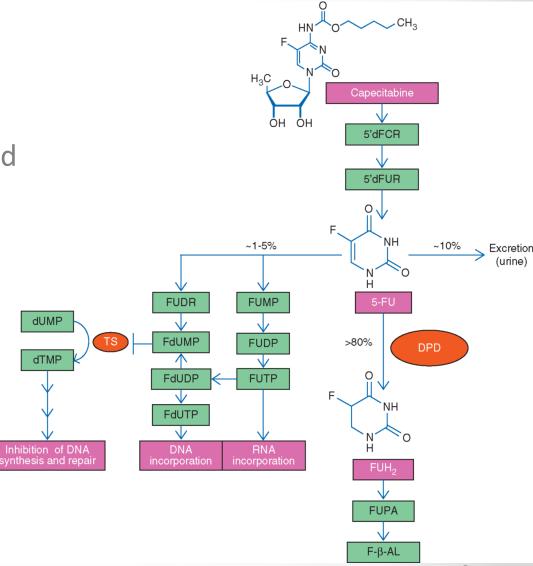
Gene (allele)	Drug	Context	RNPGx LOR
UGT1A1 (*28)	Irinotecan	Before treatment initiation with a standard dose (180 – 230 mg/m ²)	Advisable
OGTIAI (28)	milotecan	Before treatment initiation with an intensified dose (> 240 mg/m ²)	Essential
DPYD (*13, *2A, c.2846A>T)	Fluoropyrimidines	Before treatment initiation, especially in patients at risk of toxicity (bolus or high- doses, toxicity in a family member), or in an adjuvant situation	Advisable / Essential depending on phenotyping availability
TPMT (*2, *3A, *3B, *3C)	6-mercaptopurine (azathioprine)	Before treatment initiation	Essential
CYP2D6 (multiple alleles)	Tamoxifen	Case-by-case	Possibly useful
SLCO1B1 (rs4149081,rs11045879) MTHFR (c.677C>T, c.1298A>C)	Methotrexate	Case-by-case	Possibly useful

UGT1A1 and irinotecan

Relling & Dervieux Nature Reviews Cancer 1, 99-108 (November 2001)

RNGPx recommendations Collective work with Groupe de Pharmacologie Clinique

Oncologique (GPCO-Unicancer)


Figure 1. Decision tree for irinotecan prescription, reproduced from Boyer et al. [41]. With courtesy Fundamental and Clinical Pharmacology. *Etienne-Grimaldi et al. Fundamental Clin Pharm, 2015*

Application in the case of selected drugs in **ONCOLOGY**

Gene (allele)	Drug	Context	RNPGx LOR
UGT1A1 (*28)	Irinotecan	Before treatment initiation with a standard dose (180–230mg/m ²)	Advisable
0071AI (28)	millitecan	Before treatment initiation with an intensified dose (>240mg/m ²)	Essential
DPYD (*13, *2A, c.2846A>T)	Fluoropyrimidines	Before treatment initiation, especially in patients at risk of toxicity (bolus or high- doses, toxicity in a family member), or in an adjuvant situation	Essential depending on
TPMT (*2, *3A, *3B, *3C)	6-mercaptopurine (azathioprine)	Before treatment initiation	Essential
CYP2D6 (multiple alleles)	Tamoxifen	Case-by-case	Possibly useful
SLCO1B1 (rs4149081,rs11045879) MTHFR (c.677C>T, c.1298A>C)	Methotrexate	Case-by-case	Possibly useful

DPD (Dihydropyrimidine dehydrogenase)

- ✓ Fluoropyrimidines:
 - ✓ 5-fluorouracil (5-FU)
 - ✓ capecitabine
- 15% to 30% of patients treated with 5-FU will develop severe toxicity

• From: DPYD genotype-guided dose individualization to improve patient safety of fluoropyrimidine therapy: call for a drug label update. Heinricks et al. Ann Oncol. Published online August 02, 2017.

DPD (Dihydropyrimidine dehydrogenase)

\rightarrow 3 (4?) main genetic variants

Table 1	Table 1 Recommendations concerning genetic variants of DPYD.							
Geneª	Name ^a	Polymorphism ^a	rs identifier	Allele symbol	Frequency of the minority allele in the Caucasian population (%)	Enzymatic act	ivity	
						<i>In vitro</i> functionality	<i>In vivo</i> functionality	
DPYD	Dihydropyrimidine dehydrogenase	c.1679T>G	rs55886062	DPYD*13	0.1	$pprox \downarrow^\circ$ 75%	Reduced	
		c.1905+1G>A c.2846A>T	rs3918290 rs67376798	DPYD*2A	0.5 0.7%	No activity $pprox \downarrow^\circ$ 40%	No activity Reduced	
		c.1236G>A	rs56038477	HapB3	2.4	NA	NA	

NA: data not available.

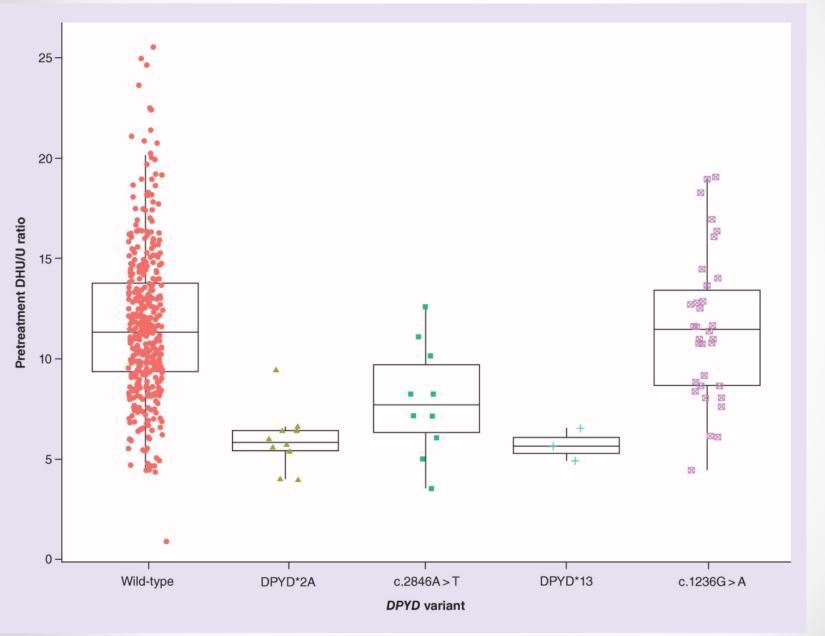
^a HNGC-approved nomenclature (see http://www.genenames.org).

DPD (dihydropyrimidine dehydrogenase)

CPIC (Clinical Pharmacogenetics Implementation Consortium) guidelines - 2013

Table 2CPIC dose recommendations for fluoropyrimidines as a function of DPD based on the presence of three variants(*2A, *13 and c.2846A>T) [10].

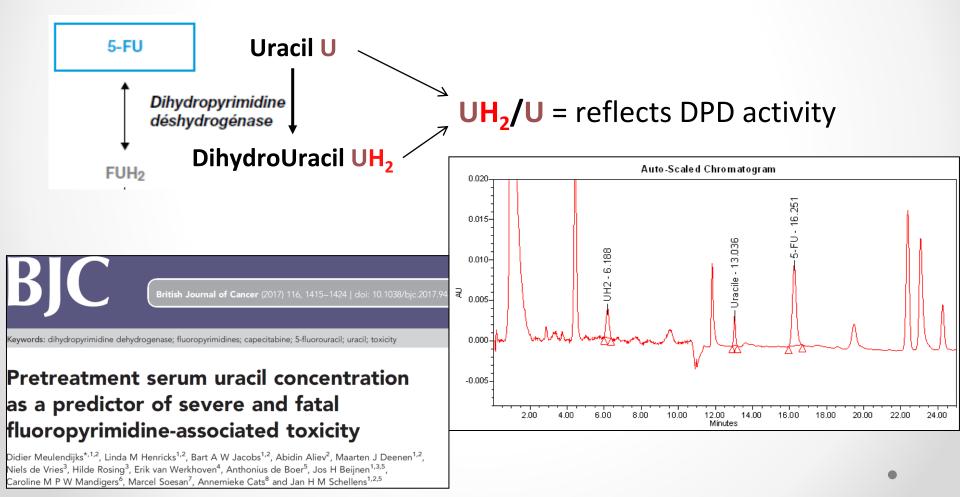
DPD genotype/phenotype DPD	Example of diplotype	Dose recommendation
Homozygous for wild allele or high DPD activity level	*1/*1 (wild-type)	Standard dose
Heterozygous genotype or intermediary DPD activity level	*1/*2A *1/*13 *1/c.2846T	Start with 50% of standard dose then adapt dose to toxicity or pharmacokinetic assay (if available)
Homozygous genotype for mutated allele or complete DPD deficiency	*2A/*2A *13/*13 c.2846T/T	Formal contraindication for 5-FU or capecitabine


CPIC: Clinical Pharmacogenetics Implementation Consortium; DPD: dihydropyrimidine dehydrogenase.

Henricks et al. Pharmacogenomics – 2015 – The Netherlands

Table 3Recommended initial dose for fluoropyrimidines as a function of the DPD activity level according to Henricks[15] based on the presence of four variants (*2A, *13, c.2846A>T and HapB3).					
Activity score of the DPD diplotype	Example of diplotype	% of standard dose			
0	*2A/*2A; *13/*13	Alternative treatment			
0.5	*2A/c.2846T; *13/c.2846T	25			
1	*1/*2A; *1/*13; c.2846T/c.2846T	50			
1.5	*1/c.2846T, *1/HapB3	75			
2	*1/*1 (wild-type)	100			

Each allele is associated with an activity score computed according to *in vitro* [26,27] and/or *in vivo* [28] functionality. *DPYD*2A*: 0; *DPYD*13*: 0; c.2846A>T: 0.5; HapB3: 0.5. DPD: dihydropyrimidine deshydrogenase.


UH2/U vs. genotype

Henricks et al. Pharmacogenomics. 2015;16(11):1277-86.

DPD (dihydropyrimidine dehydrogenase)

DPD Phenotyping test : measurement of enzyme activity
 → UH₂/U ratio by HPLC or UPLC/MS

Genotyping of a Family With a Novel Deleterious DPYD Mutation Supports the Pretherapeutic Screening of DPD Deficiency With Dihydrouracil/ Uracil Ratio

F Thomas^{1,2}, I Hennebelle^{1,2}, C Delmas^{1,2}, I Lochon^{1,2}, C Dhelens³, C Garnier Tixidre⁴, A Bonadona⁵, N Penel⁶, A Goncalves⁷, JP Delord^{2,8}, C Toulas⁹ and E Chatelut^{1,2}

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 99 NUMBER 2 | FEBRUARY 2016

We report the genetic and phenotypic analyses of DPD in

- ✓ a patient who died after a first cycle of 5-FU (FOLFOX).
- ✓ family members (n=6 healthy volunteers)

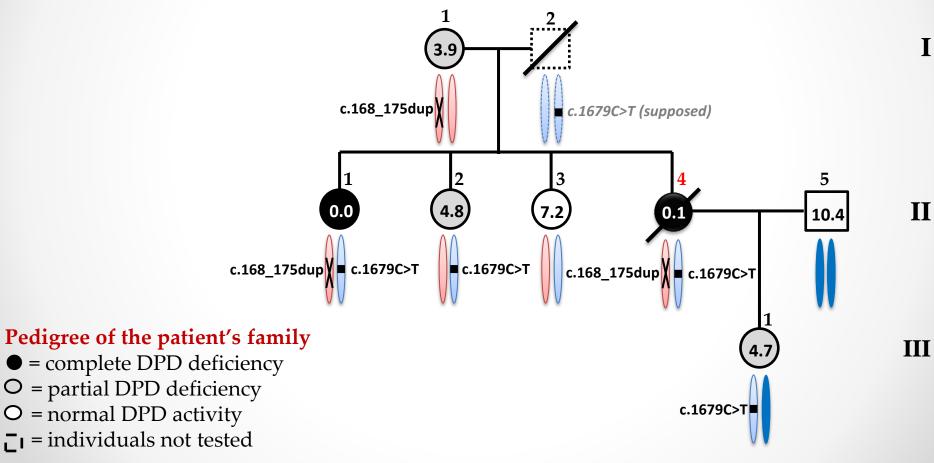
to determine the functional consequences of the mutations and study the genotype/phenotype correlation.

Results of the patient

DPD phenotype:

Individual	Dihydrouracil (ng/ml)	Uracil (ng/ml)	UH₂/U	Type of deficiency
patient	83.4	786.2	0.1	Complete

 $UH_2/U > 6$: normal, $1 < UH_2/U < 6$: partial deficiency, $UH_2/U < 1$: complete deficiency


- First genetic screening (3 DPYD variants: c.1905+1G>A, c.1679T>G, and c.2846A>T)
 - Heterozygous for c.1679T>G (exon 13)

Full DPYD sequencing

- heterozygous insertion of 8 nucleotides in exon 3
- Never described
- Truncated protein

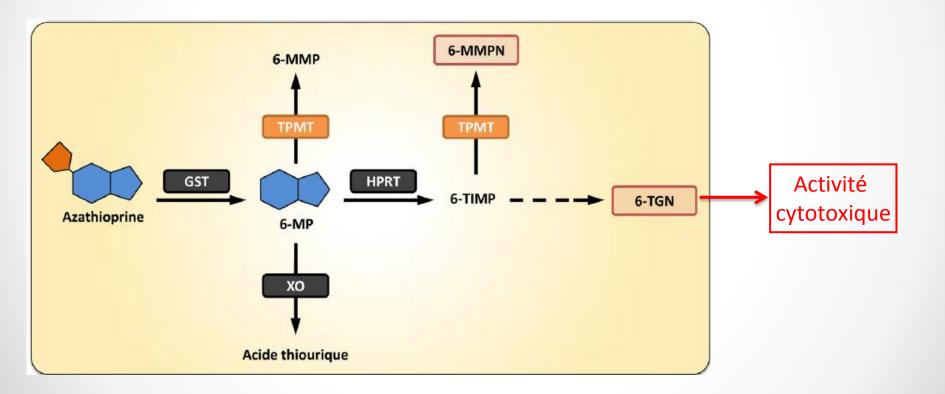
Results of the family members

 Describe the pattern of inheritance and study the correlation phenotype/genotype:

- Large amount of proof showing the implication of DPD deficiency and fluoropyrimidines toxicity
- FUSAFE (Dr Etienne-Grimaldi): meta-analyses to compare the performance of DPD genotyping vs DPD phenotyping vs their combined approach, for predicting severe FU toxicity, and surveys addressed to French health professionals to evaluate needs and practices
- RNPGx: essential (advisable if phenotyping test available)

DPYD genotype-guided dose individualization to improve patient safety of fluoropyrimidine therapy: call for a drug label update

L. M. Henricks^{1,2}, F. L. Opdam^{1,2}, J. H. Beijnen^{3,4}, A. Cats⁵ & J. H. M. Schellens^{1,2,4*}


¹Division of Pharmacology; ²Department of Clinical Pharmacology, Division of Medical Oncology; ³Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam; ⁴Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht; ⁵Department of Gastroenterology and Hepatology, Division of Medical Oncology Annals of Oncology 0: 1–8, 2017 doi:10.1093/annonc/mdx411 Published online 2 August 2017

Application in the case of selected drugs in **ONCOLOGY**

Gene (allele)	Drug	Context	RNPGx LOR
UGT1A1 (*28)	Irinotecan	Before treatment initiation with a standard dose (180 – 230 mg/m ²)	Advisable
0071A1 (28)	millitecan	Before treatment initiation with an intensified dose (> 240 mg/m ²)	Essential
DPYD (*13, *2A, c.2846A>T)	Fluoropyrimidines	Before treatment initiation, especially in patients at risk of toxicity (bolus or high- doses, toxicity in a family member), or in an adjuvant situation	Advisable / Essential depending on phenotyping availability
TPMT (*2, *3A, *3B, *3C)	6-mercaptopurine (azathioprine)	Before treatment initiation	Essential
CYP2D6 (multiple alleles)	Tamoxifen	Case-by-case	Possibly useful
SLCO1B1 (rs4149081,rs11045879) MTHFR (c.677C>T, c.1298A>C)	Methotrexate	Case-by-case	Possibly useful

6-mercaptopurine et TPMT

Chimiothérapie en hémato-oncologie

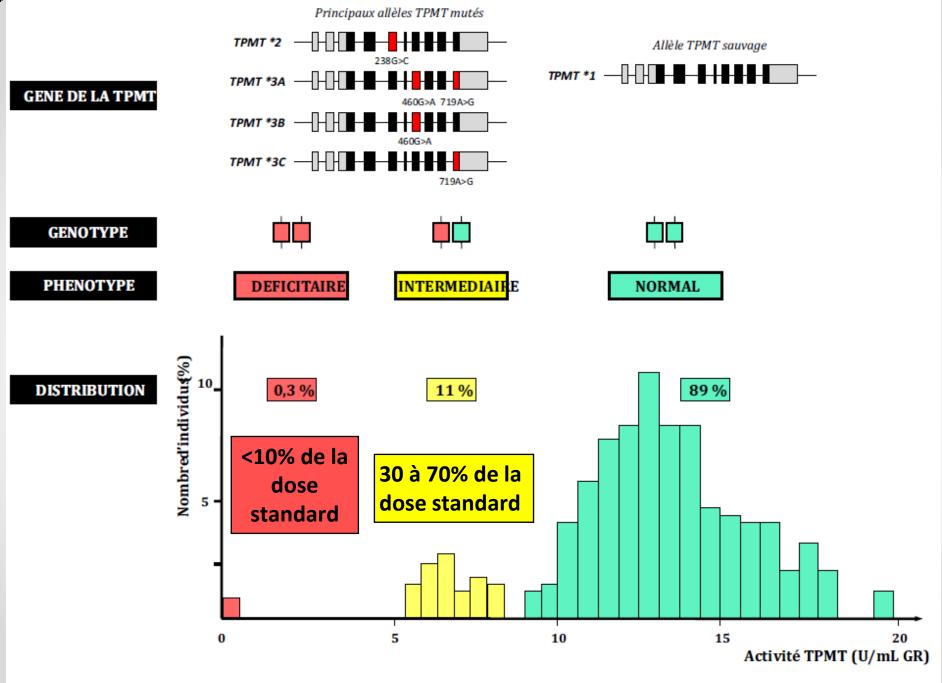


Figure 3. Polymorphismes génétiques de la TPMT et distribution d'activité dans la population générale. Reproduction avec l'aimable autorisation d'Edimark[©] La lettre du pharmacologue 2013;27(3):72. GR : globules rouges ; TPMT : thiopurine S-méthyltransférase.

Conclusion & Perspective

- The classification proposed will be applied to druggene pairs in other important therapeutic domains in order to provide recommendations.
- The objective of RNPGx is to reach consensual recommendations in order to rationalize and promote PGx testing.

Thank you for your attention